大家好!今天让俊星环保来大家介绍下关于四司村曝气沟拆装价格表的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
- 小流量分散型污水处理生物反应器试验研究?
- 臭水沟怎么处理臭味?
- 市政污水处理的工艺?
- 烟台市蓬莱区北沟镇万华污水处理在那里
小流量分散型污水处理生物反应器试验研究?
1引言(Introduction) 分散污水是指农村社区、军队驻地、高速公路服务区、机场、独立别墅区、旅游风景区等地处郊区,分布分散,无法纳入市政管网覆盖范围的特定区域产生的污水,这类污水具有水量小、排放分散、水质水量波动较大、可生化性好等特点(陈书雪等,;吕锡武,;陈吕军,;陈汗龙等,).分散污水不适宜进行集中处理,应进行就地处理,就地回用.根据水量及收集方式的不同,分散式污水处理有不同的处理规模,如在农村污水处理中,可分为单户污水分散收集处理模式、联户污水分散收集处理模式和村落污水集中收集处理模式(Libralatoetal.,;王阳等,).由于当地居住状况和经济情况不同,对污水处理设施的选择也不相同.
当前小流量分散污水常用的生物膜法、稳定塘、氧化塘、人工湿地等处理工艺,对污染物的削减有一定的作用,但也面临着诸多问题.比如,稳定塘占地面积大、污泥容易淤积(刘云国等,);人工湿地一般不宜直接处理较高浓度的生活污水,并存在水力负荷低、占地面积大、易受气候和温度影响等问题(刘峰等,;孙宗建等,);净化槽工艺虽对污水中COD、BOD和NH4+-N等具有较好的处理效果,但设计中较少考虑TN和TP的去除(王昶等,);而生物接触氧化法的填料造价高,增加了投资,另外对生物接触池内布水、布气的均匀性有一定要求(赵贤慧等,).随着更严格的污水排放标准的出台,对总磷、总氮等污染物的处理要求也进一步提升,以往分散式污水处理设施很难满足新的要求.
连续流间歇曝气工艺在国内外均有研究,相对于传统活性污泥工艺,间歇曝气工艺可以减少反硝化过程中对碳源的需求,适用于低C/N污水的脱氮(Haoetal.,;Fulazzakyetal.,).Insel等()研究认为,曝气停曝的循环时间和其中曝气时间的占比对整个反应脱氮的过程有重要影响.国内对间歇曝气工艺的研究多集中在现有污水处理厂的提标改造及处理过程中的控制参数上,如张雯等()研究了间歇曝气和连续曝气对完全混合反应器脱氮性能的影响,指出间歇曝气时,由于厌氧阶段有利于异养型兼性厌氧菌的代谢活动,故反硝化进行得较为彻底,对总氮的去除率可以维持在%以上.金春姬等()对低C/N污水进行间歇曝气工艺处理,考察了间歇曝气周期对污水脱氮的影响,认为曝气时间应根据进水氨氮负荷保持在0.5h以上,搅拌缺氧的时间应该控制在1h左右.乔海兵等()通过对连续流间歇曝气氧化沟的研究,指出循环周期越小,好氧和缺氧交替频率越高,系统中的DO水平相对较高,有利于硝化,同时也有利于消除停气期的短流影响;随着曝气时间占比的降低,停气时间的增加,进水中的有机物进入沟内,作为反硝化的外加碳源,从而使反硝化速率加快.然而,对于分散式的间歇式曝气活性污泥工艺应用于分散式污水处理还鲜有报道.由于处理成本及水量水质条件的制约,研究处理量小、能耗较低的间歇曝气反应器的处理效能具有重要的现实意义.
本文通过对应用于分散型污水处理的间歇曝气生物反应器进行生产性试验研究,考察生物反应器去除COD、氮、磷的效果,以期为其在分散式污水处理过程中的应用提供建议.
2材料与方法(Materialandmethods)
2.1实验装置
连续流间歇曝气前缺氧生物反应器(以下简称“生物反应器”)根据课题组前期研究成果设计加工(Liuetal.,;Liuetal.,),具体如图1所示.生物反应器整装在一个集装箱内,总容积为.6m3,其中,混合池为3.2m3,间歇曝气池为m3,污泥截留池为2.2m3,终沉池为1.9m3.污水进入混合池进行混合后进入间歇曝气池.间歇曝气池运用溶氧仪在线控制装置和中控电路(PLC)控制曝气强度和曝气时间比.间歇曝气池与混合池之间通过内回流管路相连,通过调节回流流量控制混合液回流比.污水流经间歇曝气池后,经折板或细管与污泥截留池相连,泥水混合物在截流池进行泥水分离澄清后,上清液流入终沉池进行进一步澄清并外排,截留的污泥通过污泥回流装置返回到间歇曝气池,可使间歇曝气池保持较高的污泥浓度.终沉池设置污泥排出装置,将所有沉淀的剩余污泥排出.可通过控制排泥时间,达到控制污泥停留时间的目的.
图1生物反应器示意图
生物反应器间歇曝气池通过PLC自动控制曝气和停曝时间,实现间歇式曝气.曝气阶段溶解氧浓度由溶氧仪(型号:WTWIQSensorNetXTController)控制.当曝气后溶解氧的浓度达到设定上限值(如2.5mg˙L-1)时,曝气风机自动停止曝气,此时混合装置自动开启,生物反应器中生物消耗溶氧.当溶解氧浓度下降到设定下限值(如0.5mg˙L-1)时,曝气风机自动开启,进行鼓风曝气.本研究中通过调节曝气时间比、混合液回流比、HRT等组合工况条件,考察了该生物反应器去除COD、氮、磷效果.每个工况维持至少d,其中,工况Ⅵ维持d以上,工况Ⅶ维持3个月.工况条件如表1所示.
2.2实验用水
实验污水取自山东省日照市某市政生活污水处理厂曝气沉砂池,经提升泵进入反应装置.生物反应器接种污泥取自此污水厂氧化沟.反应器进水水质指标如表2所示.
2.3分析项目及方法
污水进出水样品混合均匀后测定其总COD、总氮(TN)、氨氮(NH4+-N)、硝酸盐氮(NO3--N)、总磷(TP),上述各指标所采用的Hach水质分析法的序号分别为、、、、.反应池中污泥浓度(MLSS)采用重量法测定,pH使用便携式pH计(WTWMulti)测定.
3结果与讨论(Resultsanddiscussion)
3.1生物反应器内溶解氧浓度变化
生物反应器间歇曝气池中溶解氧在一个间歇曝气周期随时间变化情况如图2所示.曝气阶段,池中平均溶解氧浓度由图中水平虚线标示.以工况Ⅰ为例,曝气开始时,池中溶解氧浓度上升,当达到曝气上限2.5mg˙L-1时,曝气泵停止工作;当溶解氧达到设定下限0.5mg˙L-1时,曝气泵自动开启.如此循环往复,直到曝气周期停止,池中平均溶解氧浓度为1.mg˙L-1.当曝气阶段结束,进入停曝混合阶段,溶解氧需要被消耗~min才能进入缺氧阶段.传统活性污泥法要求曝气池溶解氧浓度不小2.0mg˙L-1,以保证硝化反应的完全.研究表明,降低反应器溶解氧浓度,可以减小曝气能耗,如将曝气溶解氧浓度控制在0.5mg˙L-1,据估计将节约%的运行能耗(Liuetal.,).同时低溶解氧浓度可以促使反应器中菌群变化,促进同步硝化反硝化的进行,提升TN去除率(吕锡武等,;吴昌永等,;Liuetal.,).
图2不同曝气和停曝时长曝气区溶解氧浓度的变化
3.2生物反应器内污泥浓度(MLSS)及污泥体积指数(SVI)变化情况
生物反应器在运行期间未从反应区主动进行排泥,系统内的MLSS是常规活性污泥污水厂的4倍,可以稳定达到mg˙L-1以上(图3).污泥经过截留池的沉降,通过污泥回流装置回到曝气池,因此,较重的污泥经过自动重力遴选保留在生物反应器中.终沉池只对出水进行澄清,产生的污泥量很少,可以通过排泥装置排出.MLSS在接种后开始迅速上升,d左右达到mg˙L-1左右.工况Ⅲ由于设备重新移动,使得污泥量减少,但之后很快重新达到稳定状态.污泥体积指数逐渐上升并稳定在~mL˙g-1,显示出良好的污泥沉降性能.在工况Ⅴ和Ⅵ,生物反应器中平均水温降至℃以下,没有出现污泥膨胀现象,这与前期研究的结果一致(Liuetal.,).工况Ⅶ进入春、夏季,温度回升,MLSS达到mg˙L-1以上,并随着污泥量的增多,其污泥体积指数略有下降.
图3生物反应器中污泥浓度及污泥沉降指数比较
3.3对COD的去除效果
生物反应器对COD的去除效果见图4,各工况的出水COD见表3.可以看出,进水COD波动较大,但生物反应器对COD的去除率在运行期间稳定达到%以上.生物反应器中可以维持很高的污泥浓度,保证其面对水质波动变化时具有较好的适应能力.调整工况后对COD的去除效果影响不大,可能是因为异养菌对溶解氧的亲和力强于自养菌,因此,在溶解氧较低的状态下,异养菌将会率先利用氧气进行代谢活动,可以较好地代谢水中的COD(殷峻等,).
图4生物反应器进出水COD及去除率
3.4对氮的去除效果
对于NH4+-N的去除,生物反应器在接种后短时间内即达到良好的硝化效果(图5a).工况Ⅰ的曝气阶段平均溶解氧浓度为1.mg˙L-1,时长为min,良好的硝化效果显示其曝气量充足,使曝气阶段污水中的氨氮达到充分转化.而在停曝混合阶段(时长min),进水的氨氮因为生物反应器的稀释作用,没有在出水中积累,使得氨氮达到较好的去除效率,在%以上.但出水TN由于NH4+-N转化为NO3--N,并没很好地从系统中脱除,TN出水浓度在mg˙L-1左右(表3),去除率在%左右(图5c).随后调整停曝时间至min(工况Ⅱ),这时曝气时间比降为0.(表1),NH4+-N去除略有波动仍可保持在%以上,脱氮效率略有提高.当调整至工况Ⅲ时,停曝时间增长至min,曝气时间比进一步下降至0..停曝时间的加长及污泥量变化使生物反应器中硝化反应受到影响,出水的NH4+-N提高,而NO3--N进一步降低.由于生物反应器反硝化作用的加强,脱氮效率进一步提升至%.在进水流量一定时,可通过调节曝气时间比、增加停曝时间,提高系统反硝化效率,进而提高脱氮效率.需要注意的是,曝气时间过短会造成NH4+-N氧化不充分,出水NH4+-N浓度增加,而过长会造成反硝化阶段没有足够的碳源进行反硝化.
图5生物反应器运行进出水NH4+-N(a)、NO3--N(b)、TN(c)浓度及去除率
随后工况Ⅳ减少停曝时间至min,曝气时间比为0.,调低混合液回流比至1.5,生物反应器维持稳定的氨氮去除效果,脱氮效率约为%~%.与前期工况Ⅱ相比,该工况在保证硝化效果的情况下,脱氮效率有一定的提升.这是因为减小混合液回流后,回到混合池的混合液携带的溶解氧减少,使混合池维持较好的缺氧条件,提升反硝化效果.具体联系污水宝或参见://www.dowater.更多相关技术文档。
考虑到曝气过大会影响脱氮效果,随后工况Ⅴ减低曝气上限设定值至1.5mg˙L-1,间歇曝气池的平均DO浓度降为0.mg˙L-1,同时调节流量至m3˙d-1,调长停曝时间为min,曝气时间比为0..此时出水NH4+-N浓度明显升高,运行阶段平均浓度为(.0±4.3)mg˙L-1(表3).由于池中平均DO浓度降低、HRT减小、曝气时间比减小,一方面使得NH4+-N硝化反应没有完全,另一方面使得NH4+-N在较长的缺氧时段积累.NO3--N浓度较前期工况明显降低,TN的去除率略有下降.考虑到冬季微生物的活性较低,为保持较好的硝化效果,调整为工况Ⅵ,降低了进水流量并增加了曝气时长.虽曝气时间比增长为0.并提高了HRT,但硝化没有完全,NH4+-N的去除效果波动,出水TN仍维持在~mg˙L-1,去除率约为%~%.当水量变化时,水量的大小影响到营养物质输送的多少,在一定污泥量和呼吸强度情况下,水量会对出水效果有影响,因此,需要适当地调节间歇曝气时间比来保证处理效果.冬季脱氮效率的减小,可以通过延长曝气时间和污泥龄的方式进行一定的补偿,提高硝化效率,但总氮的脱除仍然受一定的影响,可以考虑添加一定的碳源物质进行补充.
随后工况Ⅶ将停曝时间稍降低,间歇曝气池中平均溶解氧浓度为1.0mg˙L-1,保持曝气时长,继续监测处理效果3个月.随着运行时间的加长,生物反应器中种群达到稳定,出水NH4+-N、TN都可以达到《城镇污水处理厂污染物排放标准》(GB-)中的一级A排放标准,NH4+-N去除率在%以上,TN去除率在%~%.对比工况Ⅴ、Ⅵ、Ⅶ与前期工况Ⅰ、Ⅱ、Ⅱ,当进水流量升高时,可通过同时增加曝气时间比与循环时长来提高脱氮效率.
Dey等()通过模拟间歇曝气生物反应器发现,这类反应器最佳曝气时长应该占整个循环周期的%~%,而最佳的循环周期应该控制在2~3h范围内,在此条件下可以达到较好的脱氮效果.另外,较高的污泥浓度可以促进反应器中反硝化的进行,Sarioglu等()通过对MBR同步硝化反硝化的研究,提出当反应器中污泥浓度达到较高水平时(~mg˙L-1),污泥的衰减可以支持内源反硝化;另一方面,较高浓度的污泥可以聚集形成内部的缺氧区,可以促进同步硝化反硝化的进行.本研究得到结果与以上研究结论相近,差别主要来自于实际应用中污泥浓度与菌群的不同,以及实验环境和工况条件的不同.
3.5对磷的去除效果
生物反应器在运行期间未从反应区主动排泥,沉淀剩余污泥由终沉池排出,经由产泥系数及污泥量计算,生物反应器SRT约为d.在秋、冬运行期间(工况Ⅰ~Ⅵ),出水的总磷浓度平均约为1.mg˙L-1(表3),对总磷的去除效果约为%.工况Ⅶ,磷的进水浓度有较大的提升,但出水浓度却逐渐降至1mg˙L-1以下,满足国家城镇污水处理厂污染物排放标准1级B标准.随着生物反应器中污泥浓度的提升,去除率达到%以上.根据前期研究,间歇曝气可在混合池制造厌氧和缺氧的环境,而在间歇曝气池制造出缺氧和好氧的环境有利于聚磷菌(PAOs)的生长,进而促进了处理中磷的去除(Liuetal.,).另外,间歇曝气降低了回流至缺氧区的硝酸盐氮的浓度,减小了硝酸盐氮对厌氧释磷的影响,进而营造出适宜聚磷菌生长的环境,使得磷的去除不仅仅是通过同化作用去除,还强化了生物除磷性能(侯红勋等,).为达到更理想的总磷去除效果,可以考虑增加反应区定期排泥,并同时辅以化学除磷.
图6生物反应器运行进出水总磷浓度及去除率
4结论(Conclusions)
1)连续流间歇曝气前缺氧生物反应器可以维持较高的污泥浓度,较好地去除生活污水中的COD.稳定运行后,COD去除率可达%以上.
2)在脱氮效率方面,当水量一定时,可通过调低曝气时间比,增加停曝时间,提高脱氮效率;在曝气强度一定时,可以调低混合液回流比,提高脱氮效率;当水量升高时,可通过增加曝气时间比及循环时长,提高脱氮效率.稳定运行后,NH4+-N去除率可达%以上,TN的去除率达到%~%.
3)通过间歇曝气,生物反应器可达到良好的除磷效率.稳定运行后,TP去除率可以达到%以上.
4)在实际工程应用中,应该科学调研实地水质水量,建设调节池,平衡日间水质水量变化;调节合适的曝气停曝时间以达到设计处理效果;根据实际处理要求,增加反应区排泥。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:s://bid.lcyff./#/?source=bdzd
臭水沟怎么处理臭味?
臭水沟是一种典型的生态失衡的系统,简单说正常河流应该是绿水长流的,而一条臭水沟可以说丧失了其基本使用价值与美学价值。想要将一条臭水沟的臭味进行处理:首先要切断污染源,停止向臭水沟排污,包括工业污水与居民废水,必要时候还要利用生态沟渠拦截污染较重的地表雨水。
其次所采用的除臭设备包含PP喷淋塔、uv光氧催化废气处理设备、低温等离子废气处理设备、等离子uv光氧一体机、uv光氧活性炭一体机、活性炭吸附箱等。
市政污水处理的工艺?
随着城市化和工业化进程的加快,生活污水污染日趋严重,城市污水处理越来越多,如何有效的处理生活污水,已成为城市发展,社会经济可持续发展的重要因素。本文主要阐述污水处理的工艺和方法。一、背景
城市生活污水是城市发展中的产物,随着城市化和工业化进程的加快,其产生量不断增大,污染日益严重,已严重制约了城市社会经济的可持续发展。在全球经济快速发展的今天,环保问题,特别是城市污水处理已成为各国研究的热点。城市污水的治理对改善城市水环境,保障城市经济发展起着关键的作用。西方发达国家世纪年代经济的发展,曾导至了年代严重的环境污染。至世纪年代末,美国兴建的城市污水处理厂达余座,投入资金数万亿美元;英国、法国、德国各耗费了巨额资金兴建了~座城市污水处理厂。我国的污水处理始于世纪年代。据统计,截止年底,全国已建成污水处理厂座,用于城市污水处理工程建设的总投资约为亿元。
二、城市污水处理工艺流程总述
典型的城市污水处理工艺流程主要包括机械处理、生化处理、污泥处理等工段。有机械处理以及生化处理构成的系统属于二级处理系统,其中BOD5和SS去除率可达%-%。处理效果介于一级和二级处理中间的一般称为强化以及处理、一级半处理或不完全二级处理,主要有高负荷生物处理法和化学处理法两大类,BOD5去除率达%-%。具有生物除磷脱氮功能的二级处理系统通常称为深度二级处理。为了除特定的物质,在二级处理之后设置的处理系统属于三级处理,例如化学除磷,活性炭吸附等。
2.1 污染物的分类
从污水处理的角度,污染物可分为悬浮固体污染物、有机污染物、有毒物质、污染生物和污染营养物质。城市污水中含有的大量有机物排入水体,会使水体中溶解氧的含量降低,甚至达到缺氧状态,严重污染水体,使水中鱼类无法生存。污水中有机物浓度一般用生物化学需氧量(BOD5)、化学需氧量(COD)、总需氧量(TOD)和总有机碳(TOC)来表示。营养物质主要指氮、磷,其可使藻类和浮游生物繁殖,形成“水华”和“赤潮”。
2.2 污水处理方法
污水处理方法可根据水质类型分为物理处理法、生物处理法、污水处理产生的污泥处置及化学处理法,还可根据处理程度分为一级处理、二级处理及三级处理等工艺流程。城市污水的物理处理方法是利用物理作用分离和去除污水中污染物质的方法。常用方法有筛滤截留、重力分离、离心分离等,相应处理设备主要有格栅、沉砂池、沉淀池及离心机氧其中沉淀池同城镇给水处理中的沉淀池。生物处理法是利用微生物的代谢作用,去除污水中有机物质的方法。常用的有活性污泥法、生物膜法等,还有氧化塘及污水土地处理法。
化学处理法在城市污水处理中使用较少,一般涉及城市给水处理中的其他化学方法如中和氧化还原、离子交换、电解主要用于工业废水处理,很少用于城市污水处理。污泥需处理才能防止二次污染,其处置方法常有浓缩、厌氧消化、脱水及热处理等。一级处理主要针对水中悬浮物质,常采用物理的方法,经过一级处理后,污水悬浮物去除可达%左右,附着于悬浮物的有机物也可去除%左右;二级处理主要去除污水中呈胶体和溶解状态的有机污染物质。
三、污水处理的工艺技术
当前流行的污水处理工艺有:AB法、SBR法、氧化沟法、普通曝气法、膜分离机等,各有其自身的特点。
3.1 AB法
该工艺对曝气池按高、低负荷分为二级供氧。A级负荷高,曝气时间短,产生污泥量大,污泥负荷2.5 kg BOD/(kg MLSS·d)以上,池容积负荷在6 kg BOD/(m3·d)以上;B级负荷低,污泥龄较长。A级和B级亦可分期建设,A级与B级间设中间沉淀池。两级池子的F/M(污染物量与微生物量之比)不同,形成不同的微生物群体。AB法尽管有节能的优点,但不适合低浓度水质。
3.2 SBR法
此法进水、曝气、沉淀、出水在同一座池子中完成,常由3—4个池子构成一组,轮流运转,一池一池地间歇运行,故称序批式活性污泥法。这种—体化工艺的特点是工艺简单,由于只有—个反应池,不需二沉池、回流污泥及相关的设备,一般情况下不设调节池,多数情况下可省去初沉池,故节省了占地和投资,耐冲击负荷且运行方式灵活,可以从时间上安排曝气、缺氧和厌氧的不同状态,实现除磷脱氮的目的。
3.3 普通曝气法
其变型工艺普通曝气法出现得最早,其实际处理效果好,可处理大的污水量,对于Jc-r厂可集中建设污泥消化池,所产生的沼气可作能源利用。传统普曝法的不足之处是只能作为常规二级处理,不具备脱氮除磷功能。近几年,在工程实践中,通过降低普通曝气池的容积负荷,可以达到脱氮的目的;在普通曝气池前设置厌氧区,可以除磷,亦可用化学法除磷。采用普通曝气法去除BOD,,在池型上有多种形式,如氧化沟,工程上称为普通曝气法的变型工艺,亦可统称为普通曝气法。
3.4 氧化沟法
是在世纪年代初期发展而形成的,因其构造简单,易于管理,很快得到了推广应用,且不断创新。目前,氧化沟在应用中发展出了多种形式,比较有代表性的有:①帕式,简称单沟式,表面曝气采用转刷曝气,水深一般在2.5—3.5 m。②奥式,简称同心圆式,实际应用的多为椭圆形的三环道组成,3个环道采用不同的.DO,如外环为0、中环为1、内环为2,这有利于脱氮除磷。采用转碟曝气,水深一般在4.0-4.5 m。③卡式,简称循环折流式,采用倒伞形叶轮曝气,水深一般在3.0 m左右,但污泥易于沉积。④三沟式氧化沟(T型氧化沟),该工艺由3个池组成,中间作曝气池,左右2个池兼作沉淀池和。曝气池。其特点是采用转刷曝气、水浅、占地面积大、不设厌氧池,不具备除磷功能口J。
3.5 膜分离技术
用膜分离代替沉淀进行泥水分离,可带来活性污泥工艺的以下变化:①不再存在污泥膨胀问题。在调控活性污泥系统时,不必再考虑污泥的沉降性能,从而使工艺控制大大简化;②曝气池的污泥浓度将大大提高,MLSS可以大于 g/L,从而使系统可在超大泥龄、超低负荷状态下运行,充分满足去除各种污染物质的需要;③在同样的处理要求下,可使曝气池容积大大减小,节省了处理厂的占地面积;④污泥浓度的提高,要求较高的曝气速率,因而纯氧曝气将随着膜的分离而被大量采用。
3.6 工艺优选
常规活性污泥法和氧化沟、SBR工艺的比较。①常规活性污泥法适用于中等负荷的大型污水处理厂。②氧化沟法、SBR法的基建费用低,运行费较高。若处理规模为万t/d,折旧以年计,氧化沟、SBR与常规活性污泥法的总处理费用大体相当(处理费=运行费+折旧+固定资产投资贷款利息)。规模越小,氧化沟、SBR的总处理费用越低。因此,对于中小型污水处理厂而言,氧化沟、SBR在经济 上有益。③氧化沟、SBR工艺一般不设初沉池和污泥消化池,处理单元比常规活性污泥法减少%以上,操作管理简化;且设备国产化程度高,价格低。
四、建议和对策
①某些工序和设备的省略。对于中小型污水厂,选择工艺时应考虑省去污泥回流设备和污泥消化工序,污泥处理采用经浓缩后直接脱水, 再送垃圾厂或用于农肥。可省去氯消毒工序, 可该工序是为事故性排放而设置的,若出现事故状态,可采取临时措施,从而节约投资。
②污水进水指标BOD5、CODcr的确定不宜过大,否则污水停留时间过长,投资必将增加。
建立排污收费制度,适当提高自来水价格,以补偿污水处理厂的运行费用。污水处理厂出水指标应达到当地有关标准, 以回用于工业冷却水、 城市清洁用水和农田灌溉用水等。
③采取多渠道筹集建设资金,包括银行贷款、国债和公众负担等,并建立稳定的偿债资金来源渠道。可采用先由政府投资建设,竣工后由污水处理公司企业化经营,在法规、政策上给予支持,使其高效率、低成本运行,并收取排污费。
④采用建设-经营-移交的“bot”模式。政府通过特许权协议,在一定时间内,将项目授予为该特许权项目设立的项目公司,由其负责项目的融资、建设、运营和维护;特许权期满后,公司再将项目无偿交还给政府部门。
⑤加强交流与合作,引进国外先进技术,建立和发展适合国情的污水处理工艺技术和环保装备。污水处理是市政基础设施,尽管环境效益和社会效益显著,但目前难以有可观的经济效益。因此,需要政府给予财力和政策支持。
查询建筑企业、中标业绩、建造师在建、企业荣誉、工商信息、法律诉讼等信息,请登陆中达咨询、建设通或关注中达咨询微信公众号进行查询。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:s://bid.lcyff./#/?source=bdzd
烟台市蓬莱区北沟镇万华污水处理在那里
烟台市蓬莱区北沟镇万华污水处理厂位于北沟镇南侧,距离蓬莱市区约公里,毗邻渤海湾。该污水处理厂是由烟台市蓬莱区政府投建的大型污水处理设施,主要负责处理该地区的生活污水和工业废水。该污水处理厂采用生物处理工艺,主要包括初沉池、曝气池、生化池、二沉池等处理单元。处理过程中,先将污水进行初步的物理处理,去除大颗粒污染物和沉淀物,然后再将污水送入曝气池进行生物降解,最终通过沉淀池去除悬浮物和沉积物,使污水达到国家排放标准,可以安全排放到环境中。
该污水处理厂配备了先进的监测设备和自动控制系统,可以实时监测处理过程中的各项指标,确保处理效果稳定可靠。同时,该污水处理厂还注重环保和节能,采用多种措施减少能耗和污染物排放,为当地的环境保护和可持续发展做出了积极贡献。
以上就是俊星环保对于四司村曝气沟拆装价格表问题和相关问题的解答了,四司村曝气沟拆装价格表的问题希望对你有用!